RAJEEV GANDHI GOVT. POST GRADUATE COLLEGE, AMBIKAPUR, SURGUJA (CG), INDIA

UNDER GRADUATE COURSE in Mathematics (Under NEP 2020)

Based on UGC Model Curriculum

Learning Outcomes based Curriculum Framework

FOR

BACHLOUR OF SCIENCE PROGRAMME IN MATHEMATICS

SESSION 2023-2024

VISION

• To be a global centre of excellence in mathematics for the growth of science and technology.

MISSION

- To provide quality education and research in Mathematics through updated curriculum, effective teaching learning process.
- To inculcate innovative skills, team-work, ethical practices among students so as to meet societal expectations.

Programme Outcome

The students will be able to demonstrate ability -

- 1.To understand concept and theory of their respective subject.
- 2.To express thoughts and ideas effectively in writing and orally.
- 3.To identify relationship within and across disciplines in the sciences.
- 4.To cognitive and technical skills in their field and in multidisciplinary context.
- 5. To select and use relevant methods and tools for problem solving .
- 6. To make judgment and take decisions, based on analysis of data and evidence.
- 7. To critically evaluate principles and theory of sciences . in digital literacy and data analysis.
- 8. To find a job in their field, exercise responsibilities to job assigned and start-up a business .
- 9. To develop a sense of respect and duty towards constitutional, human and moral and professional values .
- 10 to mitigating the effects of environmental degradations, Climate change and pollution.

Graduate Attributes

The graduates should be able to demonstrate the capability to: **Disciplinary Knowledge:**

• comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

Problem solving

• Solve different kinds of problems in familiar and non-familiar contexts and apply the learning to real-life situations.

Critical thinking:

- apply analytic thought to a body of knowledge, including the analysis and evaluation of policies, and practices, as well as evidence, arguments, claims, beliefs, and there liability and relevance of evidence,
- identify relevant assumptions or implications ;and formulate coherent arguments.

Creativity

- create, perform ,or think in different and diverse ways about the same objects or scenarios,
- deal with problems and situations that do not have simple solutions,
- innovate and perform tasks in a better manner,
- view a problem or a situation from multiple perspectives,
- think'out of the box'and generate solutions to complex problems in unfamiliar contexts, adopt innovative, imaginative, lateral thinking, interpersonal skills and emotional intelligence.

Communication Skills:

- listen carefully, read texts and research papers analytically, and present complex in formation in a clear and concise manner to different groups/audiences,
- express thoughts and ideas effectively in writing and orally and communicate with others using appropriate media,
- confidently share views and express herself/himself,
- construct logical arguments using correct technical language related to a field of learning, work/vocation, or an area of professional practice,

convey ideas, thoughts ,and arguments using language that is respectful and sensitive to gender and other minority groups.

Analytical reasoning/thinking

- evaluate the liability and relevance of evidence;
- Identify logical flaws in the argument soothers;
- Analyze and synthesize data from a variety of sources;

• Draw valid conclusions and support them with evidence and examples, and addressing opposing view points

Research-related skills:

- A keen sense of observation, inquiry, and capability for asking relevant/ appropriate questions
- The ability to problem arise, synthesize and articulate issues and design research proposals,
- The ability to define problems, formulate appropriate and relevant research questions, formulate hypotheses, test hypotheses using quantitative and qualitative data, establish hypotheses, make inferences based on the analysis and interpretation of data, and predict cause-and-effect relationships,
- The capacity to develop appropriate methodology and tools of data collection,
- The appropriate use of statistical and other analytical tools and techniques,
- The ability to plan, execute and report the result so fan experiment or investigation,
- The ability to acquire the understanding of basic research ethics and skills in practicing/doing ethics in the field/in personal research work, regardless of the funding authority or field of study.

Coordinating/collaborating with others:

- Work effectively and respectfully with diverse teams,
- Facilitate cooperative or coordinate effort on the part of a group,
- Act together as a group or at remain the interest so far common cause and work efficiently as a member of a team

Learning how to learn' skills:

- acquire new knowledge and skills, including 'learning how to learn' skills, that are necessary for pursuing learning activities throughout life, through selfpaced and self-directed learning aimed at personal development, meeting economic, social, and cultural objectives, and adapting to changing trades and demands of the workplace, including adapting to the changes in work processes in the context of the fourth industrial revolution, through knowledge/skill development/re skilling,work independently, identify appropriate resources required for further learning,
- acquire or generational skills and time management to set self-defined goals and targets with timelines.
- Inculcate a healthy attitude to be a lifelong learner

Digital and technological skills

- Use ICT in a variety of learning and work situations,
- access, evaluate, and use a variety of relevant information sources,

use appropriate software for analysis of data

Multicultural competence and inclusive spirit

- the acquisition of knowledge of the values and belief so multiple cultures and a global perspective to honor diversity,
- capability to effectively engage in a multicultural group/society and interact respectfully with diverse groups,

• capability to lead diverse team to accomplish common group tasks and goals. Gender sensitivity and adopt gender-neutral approach, as also empathy to the less advantaged and the differently-able including those with learning disabilities. **Value inculcation**

- embrace and practice constitutional, humanistic ,ethical, and moral values in life, including universal human values of truth, righteous conduct, peace, love, non-violence, scientific temper, citizenship values,
- practice responsible global citizenship required for responding to contemporary global challenges, enabling learners to become aware of and understand global issues and to become active promoters of more peaceful, tolerant, inclusive, secure, and sustainable societies,
- identify ethical issues related to work, and follow ethical practices, including avoiding unethical behavior such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights,
- recognize environmental and sustainability issues, and participate in actions to promote sustainable development.

• Adopt objective, unbiased, and truthful actions in all aspects of work, Instill integrity and identify ethical issues related to work, and follow ethical practices

Programme Specific Outcomes

The post graduates shall be able to realise the following specific outcomes by the end of program studies: On successful completion of the M.Sc. Mathematics programme a student

PSO-1	Will have a strong foundation in both pure and applied mathematics.
PSO-2	Will be able to apply mathematical skills for solving problems and for preparing various competitive exams.
PSO-3	Will be able to communicate mathematical knowledge effectively, in writing as well as orally.
PSO-4	Will identify applications of mathematics in other disciplines, leading to enhancement of career prospects in different fields and research areas.
PSO-5	Will have basic knowledge of programming and computational techniques as required for employment.
PSO-6	Should have the knowledge of the fundamental axioms in mathematics and capability of developing ideas based on them and inculcate mathematical reasoning.
PSO-7	Will be able to locate and analyse the different mathematical texts with appropriate theoretical framework.
PSO-8	Have the knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in science, social science, engineering and technology.
PSO-9	Should be able to develop analytical skills, critical thinking, creativity, communication and presentation skills through assignments, seminar, project work.
PSO-10	Should be able to apply their skills and knowledge that translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques in order to process the information and draw the relevant conclusion.

The four-years undrgraduate programme (honours with research) is divided into Eight Semesters under NEP2020 based on UGC model curriculum. The schemes and syllabus of examination are detailed herewith.

		Inte	ernal Asses	sment		Semester	Exam		
S.N	Paper	Test	Seminar	Assig	Total	Min. Passing	Total	Credit	Hours
				n.		Marks			
1	DSC	07	06	07	20	40	80	4	60
2	DSE	07	06	07	20	40	80	4	60
3	GE	07	06	07	20	40	80	4	60

Courses and Course Code under UG Programme

(CBCS under NEP – 20)

2023 - 2024

Semester	DSC code	Credit	Course Title	DSE Code	Credit	Course Title
First	DSCMAT 01	04	Calculus			
Second	DSCMAT 02	04	Algebra	-		
Third	DSCMAT 03	04	Calculus and Algebra	DSEMAT 01	04	Discrete Mathematics
Fourth	DSCMAT 04	04	Real Analysis	DSEMAT 02	04	Mechanics
Fifth	DSCMAT 05	04	Linear Algebra	DSEMAT 03	04	Numerical Methods
Sixth	DSCMAT 06	04	Metric Space	DSEMAT 04	04	Probability & Statistics
	1	_II		1	11	

SEC					
Semester	DSC code	Credit	Course Title		
I/II/III/IV	SECMAT 01	02	Quantitative Aptitude		
I/II/III/IV	SECMAT 02	02	Mathematical & Logical Reasoning		

B.Sc. Semester I DSC-Calculus Course Outcome

After completing course, students are able to

- 1. Calculate the limit and examine the continuity and understand the geometrical interpretation of differentiability.
- 2. Understand the consequences of various mean value theorems.
- 3. Draw curves in Cartesian and polar coordinate systems.
- 4. To solve problems related to vector integration.

	CO1	CO ₂	CO ₃	CO ₄
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅			\checkmark	\checkmark
PO ₆	\checkmark	\checkmark		
P07				
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉			\checkmark	
PO ₁₀	\checkmark	\checkmark		\checkmark
PO ₁₁				

B.Sc. (MATHEMATICS)	3.Sc. (MATHEMATICS) SEMESTER I						
COURSE TITLE: Calcul	us						
COURSE CODE: DSCM	COURSE CODE: DSCMAT 01 COURSE TYPE: DSC						
Credit -4]	Hours-60hrs				
Theory-4	Practical-0	Theory-60	Practical-0				
	Marks						
Tł	eory-(80+20)		Practical-0				
 Scheme of Marks: Objective type questions: Ten questions carrying 1 marks each to be asked 08 to be attempted. Short answer type questions: Five questions carrying 4 marks each to be set three to be attempted (Word limit 100 words). Middle answer type questions: Five questions carrying 7 marks each to be set three to be attempted (Word limit 250 words). Long answer type questions: Three questions carrying 13 marks each to be set three to be attempted (Word limit 750 words). 							
Unit I 15 hrs	Limit , Continuity and Differentiability, Convergence of Sequences and Series of real numbers						
Unit II 15 hrs	Successive differentiation, Leibnitz theorem, Maclaurin's &Taylor's series expansions, Rolle's theorem, Lagrange theorem, Cauchy theorem						
Asymptotes, Curvature, Tracing of curves							
Unit IV 15hrs	Introduction about dou ,Surface integral, Volum of Gauss , Green ,Stoke's	ible and triple in the integral, Probles theorems	itegration, Line integral ems based on theorems				

REFERENCES:

- 1. Gorakh Prasad: Differential Calculus, Pothishalas Pvt Ltd, Allahabad.
- 2. Khalil Ahmad: Text Book of Calculus, World Edu. Pub., 2012. Int.(P) Ltd. Pub.
- 3. Howard Anton, I. Bivens & Stephan Davis (2016). *Calculus* (10th edition).Wiley India.
- 4. Gabriel Klambauer (1986). Aspects of Calculus. Springer- Verlag.
- 5. Wieslaw Krawcewicz & Bindhyachal Rai (2003). *Calculus with Maple Labs*. Narosa.

B.Sc. Semester II DSC-Algebra Course Outcome

After completing course, students are able to

1. To acquire techniques in solving equations with the help of theory of equations.

- 2. To understand the concepts of algebra.
- 3. To be familiar with group theory, ring, integral domain, field and make their fundamental strong.
- 4. Analyze the consequences of Lagranges theorem.

5. Learn about structure preserving g maps between groups and their consequences.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_2	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5				\checkmark	
PO_6	\checkmark	\checkmark			
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO9			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁					

B.Sc. (MATHEMATICS) SEMESTER II							
COURSE TITLE: Algebra							
COUL	RSE CODE	E: DSCMAT 02	COURSE TYPE: DSC				
Credit -4			Hours-60hrs				
	Theory	y-4 Practical-0 Mark	reory-oo Practical-o				
	Theory-(80+20) Practical-0						
Sche	me of M	arks:					
i. Ob	ojective	type questions: Ten questions ca	rrying 1 marks each to be asked 08 to be				
at	tempted	l					
ii. Sh	ort ans	wer type questions: Five questio	ns carrying 4 marks each to be set three				
to	be atter	mpted (Word limit 100 words).	in a committee 7 maniles as shate has not				
111. M	liddie af	iswer type questions: Five quest	lons carrying / marks each to be set				
iv T	niee to D	wer type questions: Three quest	1 USJ. ions carrying 13 marks each to be set				
1V. L	hree to	be attempted (Word limit 750 w	ords).				
		be attempted (Word mine 756 W					
	S	Roots of Polynomial equations	s, Imaginary Roots, The fundamental				
it I	hr	theorems of Algebra (without proof), The n th roots of unity, De-					
Un	15	Moivre's theorem and its Applications					
		Groups, Subgroups, Normal S	Subgroups:				
		Definition and properties of a	group, Abelian groups, Examples of				
		groups, Subgroups and exam	Subgroups and examples, Cosets and their properties,				
II	rs	Lagrange's theorem and its applications, Normal subgroups and					
nit	5 h	their properties,					
n	ij						
		Homorphism, Cyclic and Per	mutation Groups :				
		Group homomorphisms and i	somorphisms with properties; First,				
		second and third isomorphism	n theorems for groups,Cyclic groups				
		and properties, Classification	s of subgroup of cyclic groups,				
III	ILS	Permutation group and prope	erties, Even and odd permutations,				
nit	5 h	Cayley's theorem.	Cayley's theorem.				
n	D 1						
		Ring, Field and Integral Do	nan,Ideals:				
L		Definition and properties of	f a ring, example of rings, Subrings,				
t IV	rs	Integral domain and fields,	characteristic of ring and field.Ring				
Init	5h	Homomorphism,Ideals and Q	uotient Rings. Field of Quotients of an				
C	Η	Integral Domain, Euclidean R	ings, Polynomial Rings,				

REFERENCES:

1. Gorakh Prasad: Differential Calculus, Pothishalas Pvt Ltd, Allahabad.

- 2. Khalil Ahmad: Text Book of Calculus, World Edu. Pub., 2012. Int.(P) Ltd. Pub.
- 3. Howard Anton, I. Bivens & Stephan Davis (2016). *Calculus* (10th edition).Wiley India.
- 4. Gabriel Klambauer (1986). Aspects of Calculus. Springer- Verlag.
- 5. Wieslaw Krawcewicz & Bindhyachal Rai (2003). *Calculus with Maple Labs*. Narosa.

B.Sc. Semester III DSC- III Course Outcome

Calculus & Algebra

After completing course, Students are able to

- 1. To understand the concepts of Partial differentiation.
- 2. To be familiar with group theory, ring, integral domain, field and make their Fundamental strong.
- 3. Analyze the consequences of Lagrange theorem.
- 4. Learn about structure preserving g maps between groups and their consequences.

	CO ₁	CO ₂	CO ₃	CO_4
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	
PO ₃	\checkmark		\checkmark	\checkmark
PO ₄	\checkmark	\checkmark		\checkmark
PO ₅				\checkmark
PO ₆	\checkmark	\checkmark		
PO ₇				
PO ₈	\checkmark	\checkmark	\checkmark	
PO ₉				
PO ₁₀	\checkmark	\checkmark		\checkmark
PO ₁₁				

B.Sc. (MATHEMATICS) SEMESTER III					
COURSE T	'ITLE: Calculus & Algebra				
COURSE C	ODE: DSCMAT 03	COURSE TYPE: DSC			
Credit -4	owy A Drastical O	Hours-60hrs			
The	ory-4 Practical-0	Ineory-60 Practical-0			
	Theory-(80+20)	Practical-0			
Scheme	of Marks:				
i. Objec	tive type questions: Ten question	s carrying 1 marks each to be asked 08 to be			
attempted.					
ii. Short	answer type questions: Five que	stions carrying 4 marks each to be set three			
to be	attempted (Word limit 100 word	s).			
iii. Mido	lle answer type questions: Five qu	lestions carrying 7 marks each to be set			
three	e to be attempted (word limit 250	words).			
IV. LONS	answer type questions: Three questions: Three questions in the attempted (Word limit 7)	(a words)			
une	e to be attempted (word mint 7.	o worusj.			
	Partial Differentiation:				
	Continuity of two variable a	nd first order partial derivatives, higher			
t I Irs	order partial derivatives Change of variables Euler's theorem for				
Jni 5 b	homogeneous functions. Tay	lor's theorem. Total differentiation and			
1 1	lacobians.				
	Groups, Subgroups, Normal S	ubgroups:			
t II hrs	Definition and properties of a	group, Abelian groups, Examples of			
15 15	groups, Subgroups and examp	les, Cosets and their properties, Lagrange's			
-	theorem and its applications. Normal subgroups and their properties.				
—	Homorphism, Cyclic and Pern	nutation Groups :			
t II hrs	Group homomorphisms and is	omorphisms with properties; First, second			
Jni [5]	and third isomorphism theore	ms for groups,Cyclic groups and			
	properties, Classifications of s	ubgroup of cyclic groups, Permutation			
	group and properties, Even an	d odd permutations, Cayley's theorem.			
	Ring, Field and Integral Don	ain,Ideals:			
	Definition and properties of	a ring, example of rings, Subrings, Integral			
IV rs	domain and fields, characteri	stic of ring and field.Ring Homomorphism,			
nit 5h	Ideals and Quotient Rings. F	ield of Quotients of an Integral Domain.			
1 1	Euclidean Rings, Polynomial R	ings,			
		<i>.</i>			

Reference:

- 1. Gorakh Prasad: Integral Calculus, Pothishalas Pvt Ltd, Allahabad.
- 2. Shanti Narayan: Integral Calculus, S. Chand & Co.
- 3. Michael Artin(2014). *Algebra*(2ndedition). Pearson.
- 4.John B. Fraleigh(2007). *A First Course in Abstract Algebra* (7thedition). Pearson.
- 5. Joseph A. Gallian(2017). *Contemporary Abstract Algebra*(9thedition). Cengage.
- 6.Kenneth Hoffman & Ray Kunze(2015). *Linear Algebra*(2ndedition). Prentice-Hall.
- 7.I. N. Herstein(2006). *Topics in Algebra*(2ndedition). Wiley India.
- 8.Nathan Jacobson(2009).*Basic Algebra* I(2ndedition).Dover Publications.
- 9. Ramji Lal(2017). *Algebra1: Groups, Rings, Fields and Arithmetic*. Springer.

B.Sc. Semester III DSE- Discrete Mathematics Course Outcome

After completing course, students are able to

- 1. Learn about partially ordered sets, lattices and their types.
- 2. Understand Boolean Algebra and Boolean Functions, Logic gates ,switching circuit and their application
- 3. Solve real life problem using finite state machine.
- 4. Assimilate various graph theoretic concepts and familiarize with their applications.

	CO ₁	CO ₂	CO ₃	CO ₄
P01	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark		\checkmark	
PO ₃	\checkmark		\checkmark	\checkmark
PO ₄	\checkmark		\checkmark	\checkmark
PO ₅				\checkmark
PO ₆	\checkmark	\checkmark		
P07				
PO ₈	\checkmark	\checkmark	\checkmark	
PO ₉				
PO ₁₀	\checkmark	\checkmark		\checkmark
PO ₁₁	\checkmark	\checkmark		

B.Sc.	(MATH	EMATICS)	SEMESTER I	II			
COUF	RSE TIT	LE: Discrete Mathematics					
COUF	COURSE CODE: DSEMAT 01COURSE TYPE: DSE						
Credi	i t -4		Ho	urs-60hrs			
	Theo	ory-4 Practical-0	Theory-60	Practical-0			
		Mark Theory-(80+20)	S I	Practical-0			
Sche	me of l	Marks:	-	Tactical 0			
i. Ob	iective	e type questions: Ten questions car	rving 1 marks each	to be asked 08 to be			
at	tempte	ed.					
ii. Sh	ort an	swer type questions: Five question	s carrying 4 marks	each to be set three			
to	be atte	empted (Word limit 100 words).					
iii. M	iddle a	answer type questions: Five questio	ons carrying 7 mark	s each to be set			
th	ree to	be attempted (Word limit 250 wor	ds).				
iv. L	ong an	swer type questions: Three questio	ons carrying 13 mar	ks each to be set			
t	nree t	o be attempted (Word limit 750 wo	ords).				
		Sets and propositions: Cardinality	Mathematical Induct	ion Principle of			
		Inclucion and Evolucion, and Formal Languages Ordered Sets, Languages					
tI	hrs	Dhrace Structures Crammore Types of Crammore and Languages,					
Jni	[2]	Dermutations, Combinations and Discrete Drobability					
		Permutations, Combinations and Dis					
		Relations and Functions: Partial Of	rder Relations and La	ttices, Chains and Anti			
Ξ	S	Chains, Pigeon Hole Principle	minology Multigran	ha Waightad Cranha			
it]	hr	Baths and circuits Shortost Daths E	ulorian Paths and cir	nis, weighted Graphs,			
Un	15	Salesman Problem Planar Granhs		cuits, mavening			
		Recurrence Relation and Recursiv	ve Algorithm: Linear	Recurrence Relations			
III	rs	with constant coefficient. Homogene	ous solutions. Particu	lar solutions. Total			
h it		Solution. Solution by the method of (Generating Function.	Discrete Numeric			
Ū	Ĥ	function and Generating Function	0 ,				
		Rooloon Algobra: Lattices and Ale	abraic structure D	uality Distributive and			
-		according Algebra: Lattices allu Alg	Jettices and Deal	ancy, Distributive allu			
t IV	rs	complemented Lattices, Boolean	Lattices and Boole	an Algebras, Boolean			
lnit	5h	Functions and Expressions, Preposit	ional Calculus, Desig	n and implementation of			
	-	Digital Networks , Switching Circuits	5				

References

1. J. P. Tremblay & R. Manohar, Discrete Mathematical Structures with Applications to Computer

Science, McGraw-Hill Book Co., 1997.

2.. C. L Liu, Elements of Discrete Mathematics, McGraw-Hill Book Co.

3. N. Deo. Graph Theory with Application to Engineering and Computer Sciences. Prentice Hall of India

4. K. L. P. Mishra and N. Chandrashekaran, Theory of Computer Science

5. S. Wiitala, Discrete Mathematics-A Unified Approach, McGraw-Hill Book

6. Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs

B.Sc. Semester IV DSC- IV Course Outcome

Real Analysis

After completing course, Students are able to

1. To understand basic properties of real number system such as least upper bound property and

Order property.

2. Realize importance of bounded, Convergent, Cauchy and monotonic sequences of real

numbers, find their limit superior and limit inferior.

3. Understand basic properties of infinite series.

4. Learn about Riemann integrability of bounded functions and algebra of R-integrable

functions.

	CO1	CO ₂	CO ₃	CO ₄
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅			\checkmark	\checkmark
PO ₆	\checkmark	\checkmark	\checkmark	\checkmark
P07			\checkmark	\checkmark
PO ₈	\checkmark	\checkmark	\checkmark	\checkmark
PO ₉				
PO ₁₀	\checkmark	\checkmark	\checkmark	\checkmark
PO ₁₁				

B.Sc. (MAT	ГНЕМАТІСЅ)	SEMESTER IV	I			
COURSE T	ITLE: Real Analysis					
COURSE C	ODE: DSCMAT 04	COURSE TYPE: DSC				
Credit -4			s-60hrs			
Ineory-4 Practical-0 Ineory-60 Practical-0						
Marks Theory (80+20) Practical 0						
Scheme	of Marks:	IIuc				
i. Obie	ective type questions: Ten question	s carrying 1 marks eac	h to be asked 08 to			
be a	attempted.					
ii. Sho	rt answer type questions: Five que	stions carrying 4 mark	s each to be set			
thre	e to be attempted (Word limit 100	words).				
iii. Mid	dle answer type questions: Five que	estions carrying 7 mark	ks each to be set			
thre	e to be attempted (Word limit 250) words).				
iv. Long	g answer type questions: Three que	estions carrying 13 mar	ks each to be set			
three	e to be attempted (Word limit 750	words).				
	Real Numbers		1 1			
IS	The set of real numbers R as an o	rdered field ,Least upp	er bound properties			
hr	of R,Metric property and complet	eness of R,Archemedia	in Property of			
U1 15	R.Dense subsets of R, Nested inte	rval property,Neighbo	urhood of a point			
	,Open sets,Limit point of a set , clo	osed sets in R				
	Convergence of sequences in R	Bounded & monotonic	c sequences,			
	Convergence sequences and its li	mit, Limits theorems, N	Aonotonic			
t Il ırs	convergence theorem, Subsequer	nces, Bolzano –Weierst	rass theorem, Limit			
Jni L5ŀ	superior and limit inferior, Cauch	y sequence , Cauchy's (convergence			
	criterion					
	Infinite Series: Convergence and	l divergence of infinite	series of positive			
I	real numbers, Necessary condition	on for convergence, Ca	uchy criteria for			
t II hrs	convergence, Test for convergence	ce of positive terms, Co	mparison test,			
lni L5	D'Alembert's ratio test, Cauchy root test, Raabe's test, Logarithm test,					
, n	Cauchy Integral test, Alternating	series, Leibnitz's test				
	Riemann Integral: Riemann	integral. Integrability	of continuous and			
s s	monotonic function.The fundam	nental theorem of int	egral calculus. Mean			
hit 5h:	value theorems of integral calcul	us.				
Ur 1	Improper Integral: Improper in	ntegrals and their conv	vergence.Comparison			
	tests, Abel's and Dirichlet's tests.		-			

Reference:

1. R. G. Bartle and D.R. Sherbert, Introduction to Real Analysis 3rd ed, John Wiley and Sons

- 2. S.C. Malik and Savita Arora: Mathematical Analysis, New Age (P) Ltd. Publishers,
- 3. Sudhir R Ghorpade and Balmohan V. Limaye, Calculus and Real Analysis, Springer

4. T.M. Apostol: Mathematical Analysis, Addison-Wesley Series in Mathematics, 1974.5. R.R.Goldberg: Real Analysis, Oxford IBH Publishing , New Delhi, 1970.

6.Walter Rudin:Principles of Mathematical Analysis,Tata McGraw Hill.

7.Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs

B.Sc. Semester IV DSE- Mechanics Course Outcome

After completing course, students are able to

- Familiarize with subject matter, which has been the single centre, to which were drawn mathematicians, physicists, astronomers, and engineers together.
- ii) Understand necessary conditions for the equilibrium of particles acted upon by various forces and learn the principle of virtual work for a system of coplanar forces acting on a rigid body.
- iii) Determine the centre of gravity of some materialistic systems and discuss the equilibrium of a uniform cable hanging freely under its own weight.
- iv) Learn that a particle moving under a central force describes a plane curve and know the Kepler's laws of the planetary motions, which were deduced by him long before the mathematical theory given by Newton.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
P0 ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				\checkmark	
PO ₆	\checkmark	\checkmark			
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO ₉			\checkmark		
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark			\checkmark

B.Sc. (MATHEMA	.Sc. (MATHEMATICS) SEMESTER IV					
COURSE TITLE: M	lechanics	5				
COURSE CODE: D	SEMAT	02	CO	URSE TYPE: DSE		
Credit -4	T			Ho	urs-60hrs	
Theory-4		Practical-0		Theory-60	Practical-0	
	T	Mark	S			
Schome of Mar	Ineory	/-(80+20)			Practical-0	
 Scheme of Marks: i. Objective type questions: Ten questions carrying 1 marks each to be asked 08 to be attempted. ii. Short answer type questions: Five questions carrying 4 marks each to be set three to be attempted (Word limit 100 words). iii.Middle answer type questions: Five questions carrying 7 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: Three questions carrying 13 marks each to be set three to be attempted (Word limit 750 words). 						
Unit I 15 hrs	Analyti	cal conditions of Equilibi	rium,	Catenary		
Unit II 15 hrs	Forces	in three dimensions, Poir	nsot's	s central axis, Nu	Ill lines and Null planes	
Unit III 15 hrs	Simple harmonic motion and its geometrical representations, Elastic String, velocities and accelerations along radial and transverse directions, projectile,					
Unit IV 15hrs	Motion orbits,K normal	in resisting medium, M Kepler laws of motion, directions.	lotio veloc	n of particles in ity and acceler	n varying mass, Central ration in angential and	

References:

- 1. R. S. Varma (1962). A Text Book of Statics. Pothishala Pvt. Ltd.
- P.L. Srivastava (1964). Elementary Dynamics. Ram Narain Lal, Beni Prasad Publishers Allahabad.
- 3. J. L. Synge & B. A. Griffith (1949). Principles of Mechanics. McGraw-Hill.
- 4. S.L. Loney (2006). An Elementary Treatise on the Dynamics of a

particle and of Rigid Bodies.

- 5. A. S. Ramsey (2009). Statics. Cambridge University Press.
- 6. A. S. Ramsey (2009). Dynamics. Cambridge University Press.
- 7. Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs.

B.Sc. Semester V DSC- V Course Outcome Linear Algebra

After completing course, Students are able to

1. Recognize consistent and inconsistent systems of linear equations by the row echelon

form of the augmented matrix using rank.

- 2. Find eigen values and corresponding eigen vectors for a square matrix.
- 3. Understand real vector spaces , subspaces , basis ,dimension and their properties.
- 4. Learn about properties of linear transformation and isomorphism theorems.
- 5.Understand the concept of polynomials and their prime factorization.
- 6. Find canonical form of linear transformation.
- 7.0btain various variants of diagonalisation of linear transformations.
- 8. Apply Cauchy-Schwarz inequality for deriving metric on inner product spaces and obtain orthonormal basis using Gram-Schmidt orthogonalisation.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅			
P01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅				\checkmark				
PO ₆	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
P07					\checkmark			
PO ₈	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
PO ₉			\checkmark					
PO ₁₀	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
PO ₁₁				\checkmark	\checkmark			

B.Sc. (MA	ГНЕМАТІСS)	SEMESTER V	1		
COURSE T	ITLE: Linear Algebra				
COURSE C	PE: DSC				
Credit -4		Hour	rs-60hrs		
Theory-4Practical-0Theory-60Practical-0					
	Ma	rks			
	Theory-(80+20)	Pra	ctical-0		
Scheme	of Marks:				
1. UDJe	ective type questions: Ten question	s carrying 1 marks eac	ch to be asked 08 to		
De a	attempted.		a a a b ta b a a t		
11. 500 thus	rt answer type questions: Five que	Stions carrying 4 mark	ts each to be set		
	dle enginer time guestione. Fine gu) worusj. Istiona convinc 7 mar	ha aa ah ta ha aat		
III. MILU	a to be attempted (Word limit 250	estions carrying / mar	ks each to be set		
in Long	e to be attempted (word mint 250	worusj.	rive each to be set		
IV. LOIIS	to be attempted (Word limit 750)	stions carrying 15 mai	rks each to be set		
unee	e to be attempted (word mint 750	worusj.			
	Pow Echolon form of Matricos and	Applications			
	Systems of linear equations. Dow row	duction and ocholon for	ng Tho rank of		
	Matrices & its application in solving	system of linear equation	ns Symmetric and		
t I Irs	Skow-symmetric Self adjoint ortho	aonal Hamilton Skow	onal Hamilton Skow, Hamilton and Unitary		
Jni 5 h	matrices, the inverse of square matri	rix Figen value and Fige	n vectors. The		
	Characteristic equation The Caley-	Hamilton Theorem	li vectors, rife		
	Vector Snaces:				
	Definition and examples of vector sr	aces, Subspaces, Sum ar	nd direct sum of		
	subspaces. Linear span. Linear depe	ndence, independence a	nd their basic		
	properties. Basis. Finite dimensional	vector spaces. Existenc	e theorem for bases.		
: II rs	Invariance of the number of eleme	nts of a basis set. Dime	ension. Existence of		
5h	complementary subspace of a subsp	ace of a finite dimens	ional vector space.		
1 U	Dimension of sums of subspaces.	Juotient space and its di	mension		
	Linear transformations, Eigen val	ues and eigen vectors	, Bilinear, Quadratic		
	and Hermitian forms.	5			
	Linear transformations and their rep	presentation as matrices	. The Algebra of linear		
	transformations. The rank nullity th	eorem. Change of basis.	Dual space. Bidual		
it I hrs	space and natural isomorphism. Adj	oint of a linear transforr	nation. Eigen values		
Jn [5	and eigen vectors of a linear transfor	rmation.Diagonalisation	. Bilinear, Quadratic		
	and Hermitian forms.	Ū.	-		
~	Inner Product Spaces: In	nner Product Spa	ces,Cauchy Schwarz		
t IV 1rs	inequality.Orthogonal complemen	ts. Orthogonal sets	and bases. Bessel's		
lnii 15b	inequality for finite dimensional sp	aces. Gram-Schmidt Ort	hogonalization process.		
			-		

Reference:

1.I.M. Gel'fand(1989),Lectures on Linear Agebra.Dover Publications

2.Kenneth Hoffman & Ray Kunze(2015).Linear Algebra, Prentice Hall.

3.Nathan Jacobson(2009),Basic Algebra I, Dover Publications.

4. Nathan Jacobson(2009), Basic Algebra II, Dover Publications.

5.Gilbert Strang(2014).Linear Algebra and its Applications.Elsevier

6. Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs

B.Sc. (MATHEMATICS) SEMESTER V DSE- Numerical Methods Course Outcome

After completing course, students are able to

- 1. Obtain numerical solutions of algebraic and transcendental equations.
- 2. Find numerical solutions of system of linear equations and to check

the Accuracy of the solutions.

- 3. Learn about various interpolating and extrapolating methods to find numerical solutions.
- 4. Solve initial and boundary value problems in differential equations using numericalmethods.
- 5. Apply various numerical methods in real life problems.

	CO ₁	CO ₂	CO ₃	CO ₄	CO ₅
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5	\checkmark	\checkmark	\checkmark	\checkmark	
P06	\checkmark	\checkmark			
PO ₇					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO9	\checkmark		\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark			\checkmark

B.Sc. (MATH	IEMATICS)			SEMESTER	V	
COURSE TITLE: Numerical Methods						
COURSE CODE: DSEMAT03 COURSE TYPE: DSE						
Credit -4 Hours-60hrs				urs-60hrs		
Theo	ory-4	Practical-0		Theory-60	Practical-0	
	Theor	Mark	S		Dractical A	
Schomo	f Marke	y-(80+20)			Flattital-0	
i Objecti	ve tyne ques	tions [,] Ten questions ca	rrvir	o 1 marks eac	h to be asked 08 to	
he atte	mnted	dons. Ten questions ca	11 y 11	ig i marks cac	ii to be asked oo to	
ii. Short a	inswer tyne (mestions: Five questio	ns ca	rrving 4 mark	s each to be set three	
to he a	ittemnted (W	(ord limit 100 words)	115 00		s cach to be set thirde	
iii. Middl	e answer tvn	e questions: Five quest	ions	carrying 7 mai	ks each to he set	
throo	to he attem	ntod (Word limit 250 w	vorde	carrying / mar	is each to be set	
iv Long a	nswor type	ulastians: Three questi	one	y. Parrving 13 ma	rks each to be set	
throo	to he attem	ntod (Word limit 750 v	vorde	arrying 15 ma c)	i KS each to be set	
unee	to be attem	pteu (woru mint 750 w	vorus	·)·		
Unit I						
	Numerical	Methods for Solving Al	gebr	aic and Transo	cendental Equations –	
15 nrs	Round-off e	rror and computer arith	meti	c. Local and glo	bal truncation errors.	
	Algorithms	andconvergence: Bisect	ion r	nethod, false p	osition method. fixed	
	point iterat	on method. Newton's n	netho	od and secant m	nethod for solving	
	equations.					
Unit II						
15 hrs	Numerical	Methods for Solving Li	near	Systems- LU d	lecomposition and its	
	application	s, Thomas method for tr	idiag	onal systems;	Gauss🛛 Jacobi, Gauss	
	Seidel and s	uccessive over-relaxati	on (S	OR)methods.		
Unit III						
15 hrs	Interpolati	on- Lagrange and Newto	on in	terpolations, Pi	ecewise linear	
	interpolatio	n, Cubic splineinterpola	ation,	Finite differen	ce operators, Gregory	
	Newton for	ward and backward diff	erend	ceinterpolation	S.	
Unit IV	Numerica	Differentiation and In	ıtegr	ation-First ord	er and higher order	
15hrs	approximat	ion for first derivative, A	Appr	oximation for s	econd derivative;	
	Numerical i	ntegration: Trapezoidal	rule	, Simpson's rul	e and its error analysis,	
	1					

References:

1. Brian Bradie (2006), A Friendly Introduction to Numerical Analysis. Pearson.

2. C. F. Gerald & P. O. Wheatley (2008). Applied Numerical Analysis (7th

edition), Pearson Education, India.

3. M.K. Jain, S. R. K. Iyengar & R. K. Jain (2012). Numerical Methods for

Scientificand Engineering Computation (6th edition). New Age International Publishers.

4. Robert J. Schilling & Sandra L. Harris (1999). Applied Numerical Methods for Engineers Using MATLAB and C. Thomson-Brooks/Cole.

5. Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs.

B.Sc. Semester VI DSC- VI Course Outcome Metric Spaces

After completing course, Students are able to

- 1. Understand the concept of metric ,distance, convergence, completeness, compactness, connected.
- 2. Apply these concepts to key classess of spaces.
- 3. Learn to analyze mapping between spaces.
- 4. Learn to use metric space methods to solve problems of science and engineering.
- 5.Attain background for advanced courses in real analysis, functional analysis and topology.
- PO-CO Mapping

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO_5				\checkmark	
P0 ₆	\checkmark	\checkmark			
PO ₇					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO9			\checkmark		
PO_{10}	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark			\checkmark

B.Sc. (MAT	FHEMATICS		SEMESTER	VI		
COURSE T	ITLE: Metric	Spaces				
COURSE CODE: DSCMAT 06 COURSE TYPE: DSC						
Credit -4			Hou	rs-60hrs		
The	ory-4	Practical-0	Theory-60	Practical-0		
		Mar	ks			
	Theor	y-(80+20)	Pra	ctical-0		
 Scheme of Marks: i. Objective type questions: Ten questions carrying 1 marks each to be asked 08 to be attempted. ii. Short answer type questions: Five questions carrying 4 marks each to be set three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 7 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: Three questions carrying 13 marks each to be set three to be attempted (Word limit 750 words). 						
Unit I 15 hrs	Introduct Neighbour and interio Completen	Cory Concepts: Definition hoods, Limit points, Inter r. Boundary points. Sub-s ess. Cantor's intersection t	and examples of met rior points, Open and pace of a metric space. heorem. Contraction p	ric spaces. closed sets. Closure Cauchy sequences. principle.		
Unit II 15hrs	Cantor's intersection theorem. Contraction principle. Cantor's intersection theorem. Contraction principle. Dense subsets and seperable spaces, No- where dense subsets, Baire's Category theorem. First countable and second countable space. Continuous functions. Equivalent metrics, Extension theorem, Uniform continuity					
Unit III 15 hrs	Compactness. Sequential compactness. Totally bounded space. Finite intersection property., Equivalence of Compactness and sequential Compactness, Finite intersection property, Continuous functions and compact sets.					
Unit IV	Seperated of R,, Conti	sets, Disconnected and connected and connected and connections and connections and connections and connections	onnected sets, Compo ected sets.	nents, Connected subset		

Reference:

- 1. Metric Spaces, P.K. Jain and Khalil Ahmad, New Age International, New Delhi.
- 2. An Introduction to Metric Space, D Gopal, A. Deshmukh, A,S, Randive and S.Yadav, CRC Press, London.
- 3. Mathematical Analysis II Metric Spaces, J.N.Sharma, Krishna Prakashan.
- 4. Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs.

B.Sc. Semester VI DSE- Probability & Statistics Course Outcome

After completing course, students are able to

- i) Understand the basic concepts of probability.
- ii) Appreciate the importance of probability distribution of random variables and toknow the notion of central tendency.
- iii) Establish the joint distribution of two random variables in terms their relation and regression.
- iv) Understand central limit theorem which shows that the empirical frequencies of somany natural populations exhibit normal distribution.
- v) Study entropy and information theory in the framework of probabilistic models.

	CO1	CO ₂	CO ₃	CO ₄	CO ₅
PO ₁	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₂	\checkmark	\checkmark	\checkmark		\checkmark
PO ₃	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₄	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PO ₅	\checkmark	\checkmark	\checkmark	\checkmark	
P0 ₆	\checkmark	\checkmark			
P07					\checkmark
PO ₈	\checkmark	\checkmark	\checkmark		
PO9	\checkmark		\checkmark		\checkmark
PO ₁₀	\checkmark	\checkmark		\checkmark	
PO ₁₁	\checkmark	\checkmark			\checkmark

B.Sc. (MAT	HEMATICS)			SEMESTER V	Ι		
COURSE TITLE: Probability & Statistics							
COURSE CO	DE: DSEMAT	<u>'04</u>		COURSE TYPE: DS	E		
Credit -4				Hou	rs-60hrs		
The	eory-4	Practical-0		Theory-60	Practical-0		
		Mark	s	_			
	Theor	y-(80+20)		Р	ractical-0		
Scheme	of Marks:	·		4 1 1			
1. Objecti	ve type quest	tions: Ten questions ca	rryın	g 1 marks each	to be asked 08 to be		
attemp)tea.				aa ah ta ha aat thusa		
II. Short	answer type (luestions: Five questio	ns ca	rrying 4 marks	each to be set three		
	accempted (W	oru mint 100 wordsj.	ions	corrying 7 month	re each to be set		
throad	to be attempt	e questions: rive quest tod (Word limit 250	rde)	carrying / mark	is each to be set		
iv Long	answor type	auostions: Three quest	ione	corrying 12 mor	de aach ta ha cat		
IV. LUIIg	to be attempt	yuestions. Three yuest	orde	(arrying 15 mai	KS Eddin to be set		
tinee	to be attemp		orus				
IInit I	Probability	And Random Variables	s-Axio	omatic and empi	irical definitions of		
15 hrs	probability.	Independent and depen	dent	events. Conditio	onal probability and		
15 11 5	Bave's theor	em: Discrete and contin	nuous	s random variab	les andtheir		
	probability of	listributions. Cumulativ	ve dis	tribution function	on. <i>n</i> th Moments.		
	Moment gen	erating function, Chara	cteris	stic function	- , ,		
Unit II	Univariate I	Distributions					
15 hrs	Discrete dist	ributions: Bernoulli tri	als an	nd Bernoulli dist	ribution. Binomial and		
10 1110	Poisson dist	ributions: Continuous d	istrik	outions: Uniform	. Geometric. Gamma.		
	Exponential	. Chi- square. Beta and r	orma	al distributions:	Normal		
	approximati	on to the binomial distr	ibuti	on,			
Unit III			-	,			
15 hrs	Bivariate Di	stribution-Joint cumula	ative	distribution fun	ction and its		
10 110	properties, J	oin ability density funct	tion, l	Marginal distrib	utions, Expectation of		
	function of two random variables, Joint moment generating function,						
	Conditional	distributions and expec	tatio	ns, Independenc	e of bivariate random		
	variables.						
Unit IV	Correlation	and Regression The Co	rrelat	tion coefficient, (Covariance,		
15hrs	Calculation of	of covariance from joint	mon	nent generating	function, Linear		
	regression f	or two variables, The m	ethoc	l of least square			

References:

1.David Applebaum (1996). *Probability and Information: An Integrated Approach*.Cambridge University Press.

2.Robert V. Hogg, Joseph W. McKean & Allen T. Craig (2013). *Introduction to Mathematical Statistics* (7th edition), Pearson Education.

3.Irwin Miller & Marylees Miller (2014). John E. Freund's Mathematical

Statisticswith Applications (8th edition). Pearson. Dorling Kindersley Pvt. Ltd.

India.6. Suggested Equivalent online courses: Web link NPTEL/SWAYAM /MOOCs.

B.Sc. /B.A. / B.Com. / B.C.A.				SEMESTER I/II/III/IV					
COURSE TITLE: Quantitative Aptitude									
COURSE CODE:SE	CMAT -	-001		COURSE TYPE: SEC					
Credit -2				Hours-30hrs					
Theory-2		Practical-0	T	heory-30	Practical-0				
Marks									
Theory-(40+10)				Practical-0					
Scheme of Marks:									
i. Objective type questions: Ten questions carrying 1 marks each to be asked									
07 to be attempted.									
ii. Short answer type questions: Five questions carrying 2 marks each to be set									
three to be attempted (Word limit 100 words).									
iii. Middle answer type questions: Five questions carrying 4 marks each to be set									
three to be attempted (Word limit 250 words).									
iv. Long answer type questions: Three questions carrying 5 marks each to be set									
three to be attempted (Word limit 750 words).									
t I s	Alphabet Coding & Decoding Direction & Distance Banking &								
Jni hrs	Comparison of Rank								
נ 15									
nit 5 h	Calendar, Time & Clocks, Arithmetical Reasoning , Blood Relation								
U 1:									

REFERENCES:

- 1. Dr. R. S. Agrawal , A Modern Approach to Verbal & Non-verbal Reasoning, S.Chand Publication.
- 2. BS Sijwali & Indu Sijwali , A New Approach to Reasoning Verbal, Non-verbal & Analytical

Arihant Publication.

3. K.Kundan, Advanced Verbal Reasoning, Magical Book Series

4. Dhiraj Ku. Singh, Verbal Reasoning, Lucent Publication

B.Sc. /B.A. / B.Com. / B.C.A.			SEMESTER I/II/III/IV						
COURSE TITLE: Logical and Mathematical Reasoning									
COURSE CODE:SECMAT -002				COURSE TYPE: SEC					
Credit -2				Hours-30hrs					
Theory-2		Practical-0	Theory-30 Practical-0		Practical-0				
Marks									
Theory-(40+10)			Practical-0						
 i. Objective type questions: Ten questions carrying 1 marks each to be asked 07 to be attempted. ii. Short answer type questions: Five questions carrying 2 marks each to be set three to be attempted (Word limit 100 words). iii. Middle answer type questions: Five questions carrying 4 marks each to be set three to be attempted (Word limit 250 words). iv. Long answer type questions: Three questions carrying 5 marks each to be set three to be attempted (Word limit 750 words). 									
Unit I 15 hrs	Alphabet, Coding & Decoding, Direction & Distance, Ranking & Comparison of Rank								
Unit II 15 hrs	Calendar, Time & Clocks, Arithmetical Reasoning , Blood Relation								

REFERENCES:

- 1. Dr. R. S. Agrawal , A Modern Approach to Verbal & Non-verbal Reasoning, S.Chand Publication.
- 2. BS Sijwali & Indu Sijwali , A New Approach to Reasoning Verbal, Non-verbal & Analytical

Arihant Publication.

3. K.Kundan, Advanced Verbal Reasoning, Magical Book Series

4. Dhiraj Ku. Singh, Verbal Reasoning, Lucent Publication